College of Science, Department of Statistics
Bachelor of Science (BS), Major in Statistics (STAT), Statistical Data
Science Option (SDSC) For students entering under UG Catalog 2023-2024
A dagger (\dagger) indicates a course with prerequisites or co-requisites.

I. Pathways to General Education (47 credits)

Concept 1 Discourse (9 credits)
(1f): 6 credits in foundational courses. ENGL 1105-1106 required

| ENGL 1105 First- Year Writing | $\mathbf{3}$ | |
| :--- | :--- | :--- |\quad| \dagger ENGL 1106 First-Year Writing | $\mathbf{3}$ | |
| :--- | :--- | :--- | :--- |

(1a): 3 credits in advanced or applied writing or speaking courses. ENGL 3764 is required

```
† ENGL 3764 Technical Writing 3
```

Concept 2 Critical Thinking in Humanities (6credits)

Concept 3 Reasoning in the Social Sciences (6credits)

Concept 4 Reasoning in the Natural Sciences (6 credits)

Concept 5 Quantitative and Computational Thinking (11 Credits)
(5f): 6 credits in foundational courses. The following course sequence is required of all students majoring in Statistics.

\dagger MATH 1225 Calculus of a Single Variable	4	

\dagger MATH 1226 Calculus of a Single Variable	$\mathbf{4}$	

(5a): 3 credits in advanced or applied courses. The following course is required of all students majoring in Statistics.

\dagger STAT 3005 Statistical Methods	$\mathbf{3}$	

Concept 6 Critique and Practice in Design and the Arts (6 credits $=3$ in design +3 in arts, or 6 in integrated design and arts)

| | $\mathbf{3}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| | 3 | |
| :--- | :--- | :--- |

Concept 7 Critical Analysis of Identity and Equity in the United States (3 credits)
\square
II. Statistics Bachelor of Science Degree Core Requirements (21 credits)

Statistics Required Courses. Complete all the following courses (21 credits)

\dagger STAT 3006 Statistical Methods
\dagger STAT 3104 Probability and Distributions
\dagger STAT 4105 Theoretical Statistics
\dagger STAT 4106 Theoretical Statistics
\dagger STAT 4204 Experimental Designs
\dagger STAT 4214 Methods of Regression Analysis
\dagger STAT 4444 Applied Bayesian Statistics

3	
3	
3	
3	
3	
3	
3	

III. Statistics Bachelor of Science Degree Major Requirements (18 credits)

Statistics Required Courses. Complete all the following courses (9 credits)

\dagger STAT/CMDA/CS 3654 Introductory Data Analytics and Visualization
\dagger STAT 4004 Methods Statistical Computing
\dagger STAT 4024 Communication in Statistical Collaboration

3	
3	
3	

*All students completing a B.S. in Statistics must complete STAT 3005 Statistical Methods. This requirement is included in Section I above.

Mathematics Required Courses. Complete all the following courses (6 credits)

\dagger MATH 2204 Intro Multivariable Calculus
\dagger MATH 2114 Introduction to Linear Algebra

3	
3	

**All students completing a B.S. in Statistics must complete MATH 1225-1226.These courses are listed in Section I above.

Computer Programing Required Courses. Complete ONE of the following courses (3 credits)

CS 1064 Introduction to Programming in Python
CS 1114 Introduction to Software Design

3	
3	

IV. Required Courses Specific to the Statistical Data Science Option (21 Credits)

Statistics Required Courses. Complete all the following courses (3 credits)
\dagger STAT/CMDA/CS 4654 Intermediate Data Analytics and Machine Learning
Computer Programming Required Courses. Complete Two of the following courses (6 credits)

CS 1064^{1} Introduction to Programming in Python
CS 1114 Introduction to Software Design
\dagger CS 2064 Intermediate Programming in Python
\dagger CS 2114 Software Design and Data Structures
MATH 3054 Programming for Math
\dagger STAT 3094 SAS Programming

3	
3	
3	
3	
3	
3	

***These courses must be different from the course completed to meet the computer programming requirement in Section III.

Restricted Electives. Complete FOUR courses from the following list. At least TWO of the four must be STAT. (12 credits)

\dagger STAT 3204 Data Visualization
\dagger STAT 3504 Nonparametric Statistics
\dagger STAT 4364 Introduction to Statistical Genomics
\dagger STAT 4504 Applied Multivariate Analysis
\dagger STAT 4514 Introduction to Categorical Data Analysis
\dagger STAT 4524 Sample Survey Methods
\dagger STAT 4584 Advanced Calculus for Statistics OR \dagger MATH 3224 Advanced Calculus
\dagger STAT 4534 Applied Time Series
\dagger STAT/CMDA 4664 Computational Intensive Stochastic Modeling
\dagger STAT/AAEC $4804{ }^{2}$ Elementary Econometrics
STAT $4964{ }^{3}$ Field Study or STAT $4994{ }^{3}$ Undergraduate Research
\dagger BIT 3424, ${ }^{4,5}$ Introduction to Business Analytics Modeling
\dagger BIT 34344,5 Advanced Modeling for Business Analytics
\dagger BIT 45444,5 Advanced Methods in Business Analytics
\dagger CS 4234^{4} Parallel Computation
\dagger ECE 4424 ${ }^{4}$ CS 4824^{4} Machine Learning
\dagger MATH $4454{ }^{4}$ Applied Mathematical Modeling
\dagger ISE $4404{ }^{4}$ Statistical Quality Control
\dagger GEOG 4314^{4} Analysis in Geographic Information Systems
GEOG/GEOS $4354{ }^{4}$ Introduction to Remote Sensing

$\mathbf{3}$	
$\mathbf{3}$	
3	
3	
3	

V. Free Electives ($\mathbf{1 3}$ credits)

Prerequisites

\dagger Some courses listed on this checksheet may have prerequisites; please consult the Undergraduate Course Catalog or check with your advisor for more information.

Foreign Language Requirement

Students who did not successfully complete at least two years of a single foreign, classical, or sign language during high school must successfully complete six semester hours of a single foreign, classical, or sign language at the college level. Courses taken to meet this requirement do not count toward the hours required for graduation. Please consult the Undergraduate Catalog for details.

Course Substitutions and Comments

${ }^{1}$ For transfer students from Computer Science, CS 1705 may substitute for CS 1064.
${ }^{2}$ For Economic majors or minors, ECON 4304, Introduction to Econometric Methods, can substitute for STAT 4804.
${ }^{3}$ A maximum of 3 credits from either 4964, Field Study (for internships or other summer experience), or STAT 4994, Undergraduate Research, may count as a Statistic elective with prior approval from the department.
${ }^{4}$ An upper-level course that is not offered by the Department of Statistics. Be aware of all prerequisites.
${ }^{5} \mathrm{Be}$ aware that priority enrollment is given to BIT majors.
Note: CMDA 2005-2006 is equivalent to all the following: STAT 3005 AND STAT 3006 AND STAT 3104 AND (MATH 2214 OR MATH 2214H) AND (MATH 2204 OR MATH 2204H)

Satisfactory Progress Towards Degree and Minimum Grade Requirements

- It is recommended that, upon attempting 72 credit hours, students will have completed STAT 3005, MATH 1225, 1226, 2114, 2204, and CS 1064 or 1114.
- Upon having attempted 90 semester credits, students must have an in-major GPA of 2.0 or better.
- Within the first two attempts, including attempts ending in course withdrawal, students must earn a C- or better in all MATH, STAT, or CS designated courses for the degree (or equivalents thereof).

Graduation Requirements

Virginia Tech requires $\mathbf{1 2 0}$ credit hours to graduate with a GPA of 2.0 or greater for all hours attempted. The 120 credit hours must include all required courses for the statistics major as outlined in this check-sheet. Within the first two attempts, including attempts ending in course withdrawal, students must earn a C- or better in all MATH, STAT, or CS designated courses for the degree (or equivalents thereof). In addition, students must have an in-major GPA of 2.0 or greater. All STAT courses, any course taken to fulfill Statistical Data Science option elective credit, and all required MATH and CS courses will be used to calculate in-major GPA. If 120 credit hours are reached and a student does not meet the GPA requirement, the student must take additional STAT courses to raise the in-major GPA to a 2.0.

